HSMS 2825 PDF

Six-sigma Quality Level? Single, Dual and Quad Versions? Matched Diodes for Consistent Performance? This series offers a wide range of specifications and package configurations to give the designer wide flexibility. Typical applications of these Schottky diodes are mixing, detecting, switching, sampling, clamping, and wave shaping.

Author:Guzshura Faukree
Country:Tanzania
Language:English (Spanish)
Genre:Relationship
Published (Last):2 December 2017
Pages:482
PDF File Size:18.46 Mb
ePub File Size:10.40 Mb
ISBN:665-1-74975-642-4
Downloads:53823
Price:Free* [*Free Regsitration Required]
Uploader:Malalkis



Six-sigma Quality Level? Single, Dual and Quad Versions? Matched Diodes for Consistent Performance? This series offers a wide range of specifications and package configurations to give the designer wide flexibility. Typical applications of these Schottky diodes are mixing, detecting, switching, sampling, clamping, and wave shaping. The HSMSx series of diodes is the best all-around choice for most applications, featuring low series resistance, low forward voltage at all current levels and good RF characteristics.

Package marking provides orientation and identification. VF for diodes in pairs and quads in 15 mV maximum at 1 mA. C TO for diodes in pairs and quads is 0. Package marking code is in white. Package marking code is laser marked. GUx Notes: 1. Operation in excess of any one of these conditions may result in permanent damage to the device. This instrument effectively isolates individual diode branches from the others, allowing accurate capacitance measurement of each branch or each diode.

The conditions are: 20 mV R. The equivalent diagonal and adjacent capacitances can then be calculated by the formulas given below. In a quad, the diagonal capacitance is the capacitance between points A and B as shown in the figure below. V HSMSx 15 0. Forward Current vs. Forward Voltage at Temperatures.

Figure 2. Reverse Current vs. Reverse Voltage at Temperatures. Figure 3. Total Capacitance vs. Reverse Voltage. VF Right Scale 1? VF Right Scale 1 0. Dynamic Resistance vs. Forward Current. Figure 5. Figure 6. Typical Output Voltage vs. Figure 8. Figure 9. Typical Conversion Loss vs. Drive, 2. Each is optimized for certain applications.

The first step in choosing the right product is to select the diode type. All of the products in the HSMSx family use the same diode chip — they differ only in package configuration.

The same is true of the HSMSx, x, x, x and x families. Each family has a different set of characteristics, which can be compared most easily by consulting the SPICE parameters given on each data sheet. Mixers and frequency multipliers to 6 GHz. The HSMSx is a family of zero bias detector diodes for small signal applications. For high frequency detector or mixer applications, use the HSMSx family. The HSMSx is a series of specialty diodes for ultra high speed clipping and clamping in digital circuits.

Schottky Barrier Diode Characteristics Stripped of its package, a Schottky barrier diode chip consists of a metal-semiconductor barrier formed by deposition of a metal layer on a semiconductor.

The most common of several different types, the passivated diode, is shown in Figure 10, along with its equivalent circuit. RS is the parasitic series resistance of the diode, the sum of the bondwire and leadframe resistance, the resistance of the bulk layer of silicon, etc. RF energy coupled into RS is lost as heat—it does not contribute to the rectified output of the diode. CJ is parasitic junction capacitance of the diode, controlled by the thickness of the epitaxial layer and the diameter of the Schottky contact.

Rj is the junction resistance of the diode, a function of the total current flowing through it. A for very low barrier diodes. The silicon chip used in this series has been designed to use the fewest possible processing steps to minimize variations in diode characteristics. For those applications requiring very high breakdown voltage, use the HSMSx family of diodes. Schottky Diode Chip.

All Schottky diode curves have the same slope, but not necessarily the same value of current for a given voltage. This is determined by the saturation current, IS, and is related to the barrier height of the diode.

Through the choice of p-type or n-type silicon, and the selection of metal, one can tailor the characteristics of a Schottky diode. Barrier height will be altered, and at the same time CJ and RS will be changed. In general, very low barrier height diodes with high values of IS, suitable for zero bias applications are realized on p-type silicon. Such diodes suffer from higher values of RS than do the n-type.

Thus, p-type diodes are generally reserved for detector applications where very high values of RV swamp out high RS and n-type diodes such as the HSMSx are used for mixer applications where high L. DC biased detectors and self-biased detectors used in gain or power control circuits. In general, the former use resistive impedance matching at the input to improve flatness over frequency — this is possible since the input signal levels are high enough to produce adequate output voltages without the need for a high Q reactive input matching network.

These circuits are self-biased no external DC bias and are used for gain and power control of amplifiers. Small signal detectors are used as very low cost receivers, and require a reactive input impedance matching network to achieve adequate sensitivity and output voltage. Those operating with zero bias utilize the HSMSx family of detector diodes. However, superior performance over temperature can be achieved with the use of 3 to 30?

A of DC bias. Such circuits will use the HSMSx family of diodes if the operating frequency is 1. Such detectors can be realized either as series or shunt circuits, as shown in Figure The two diodes are in series in the output video circuit, doubling the output voltage. Some cancellation of even-order harmonics takes place at the input. Voltage Doubler. Both the detection sensitivity and the DC forward voltage of a biased Schottky detector are temperature sensitive.

Where both must be compensated over a wide range of temperatures, the differential detector[2] is often used. Such a circuit requires that the detector diode and the reference diode exhibit identical characteristics at all DC bias levels and at all temperatures. This is accomplished through the use of two diodes in one package, for example the HSMS in Figure In the Agilent assembly facility, the two dice in a surface mount package are taken from adjacent sites on the wafer as illustrated in Figure Single Diode Detectors.

The series and shunt circuits can be combined into a voltage doubler[1], as shown in Figure The doubler offers three advantages over the single diode circuit. High Power Differential Detector. Figure Voltage Doubler Differential Detector. Differential Detector. The concept of the voltage doubler can be applied to the differential detector, permitting twice the output voltage for a given input power as well as improving input impedance and suppressing second harmonics.

However, care must be taken to assure that the two reference diodes closely match the two detector diodes. See Figure 18 for the schematic and a physical layout of the circuit. In this design, the two 4. RF in 68? D2 68? Fabrication of Agilent Diode Pairs. In high power applications, coupling of RF energy from the detector diode to the reference diode can introduce error in the differential detector.

The HSMSK is illustrated in Figure 15 — note that the ground connections must be made as close to the package as possible to minimize stray inductance to ground. Temperature Compensated Detector.

In certain applications, such as a dual-band cellphone handset operating at both and MHz, the second harmonics generated in the power control output detector when the handset is working at MHz can cause problems. Diodes D3 and D4 provide temperature compensation as described above.

PATENTE NAUTICA ENTRO 12 MIGLIA PDF

HSMS-2825-TR1

Six-sigma Quality Level? Single, Dual and Quad Versions? This series offers a wide range of specifications and package configurations to give the designer wide flexibility. Typical applications of these Schottky diodes are mixing, detecting, switching, sampling, clamping, and wave shaping. The HSMS series of diodes is optimized for high voltage applications.

BIOETHICS AND THE NEW EMBRYOLOGY SPRINGBOARDS FOR DEBATE PDF

HSMS 2825 PDF

Gaithersburg, Maryland, United States. An error occurred the product could not be saved. If you close this banner, or continue browsing, it means you consent hs,s us to use cookies. After calibration is performed, you will receive an ISO certificate from Intertek, which is valid for 12 months. No additional import charges at delivery! If you wish to change your cookie settings, or learn more about cookies, click here. Specifications Contact Us Ordering Guides.

Related Articles